- 1. Represent $\frac{7}{4}$ on the number line.
- **Ch-1 Rational Numbers**
- 2. Write five rational numbers greater than -2.

3. State True or False

- i. When we multiply a rational number with 1 we get same number.
- ii. A rational number is always a whole number.
- iii. All the whole numbers are rational numbers.
- iv. All the integers are rational numbers.

4. Fill in the blanks

- a. Zero has _____ reciprocal.
- b. The product of a rational no. and its inverse is ______.
- c. The numbers 5 and -5 are their own _____.
- d. The number _____ is not the reciprocal of any number.

5. Match the columns

Column A	Column B
i. The multiplicative inverse of $1\frac{7}{11}$	a. Not defined
ii. The reciprocal of -1	b. $-1\frac{7}{11}$
iii. The reciprocal of 0	c1
iv. Negative of $1\frac{7}{11}$	d. 11/18

- 6. Represent $\frac{3}{4}$ on the number line.
- Arrange in ascending order

$$\frac{2}{5}, \frac{1}{3}, \frac{-3}{4}, \frac{1}{6}$$

- 8. Which is greater?
 - a. $\frac{9}{-13}$ and $\frac{7}{-12}$
 - b. $\frac{-8}{9}$ and $\frac{-9}{10}$
- 9. using appropriate properties find: $\frac{2}{5} \times \left(-\frac{3}{7}\right) \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$.

- 2. Five rational numbers greater than -2 are:
 - $\frac{-3}{2}$, -1, $\frac{-1}{2}$, 0, $\frac{1}{2}$
- 3. i. True
 - ii. False , it is not necessary that every rational number is whole number.
 - iii. True
 - iv. True
- 4. a. No
 - b. One
 - ^c Negative
- 5. a. d
 - b. c
 - c a
- 6. Divide the number line into 4 equal parts starting from $\frac{0}{4}, \frac{1}{4}, \dots, \frac{4}{4}$ on the right side of number line. Bold mark $\frac{3}{4}$ as asked in the question and mark it as any alphabet like A.

7. LCM of 5, 3, 4 and 6 is 60.

So,
$$\frac{(12,20,-15,10)}{60}$$
 - $\frac{45}{60}$, $\frac{12}{60}$, $\frac{20}{60}$, $\frac{2}{60}$

- 8. a. $\frac{(9\times(-1)}{(-13\times(-1))}=\left(\frac{-9}{13}\right)$ and $\frac{(7\times(-1))}{(-12\times(-1))}=\left(\frac{-7}{12}\right)$
 - LCM of 13 and 12 is 156

 - $\frac{(-108, -91)}{156}$ $\frac{-108}{156} < \frac{-91}{156}$ Hence, $\frac{-7}{12}$ is greater
 - b. LCM of 9 and 10 is 90.
 - (-80, -81) $\frac{\frac{(-80, -81)}{90}}{\frac{-81}{90} < \frac{-80}{90}}$ Hence, $\frac{-8}{9}$ is greater.
- 9. $\frac{2}{5} \times \left(-\frac{3}{7}\right) \frac{1}{6} \times \frac{3}{2} + \frac{1}{4} \times \frac{2}{5}$

 - $\begin{array}{l} \frac{5}{5} \times \left(-\frac{7}{7} \right) \frac{7}{6} \times \frac{7}{2} + \frac{7}{4} \times \frac{5}{5} \\ = \frac{2}{5} \times \left(-\frac{3}{7} \right) \frac{1}{6} \times \frac{3}{2} + \frac{2}{5} \times \frac{1}{14} \dots \text{[By commutativity]} \\ = \frac{2}{5} \times \left(-\frac{3}{7} \right) + \frac{2}{5} \times \frac{1}{14} \frac{1}{6} \times \frac{3}{2} \dots \text{[By associativity]} \\ = \frac{2}{5} \times \left\{ \left(-\frac{3}{7} \right) + \frac{1}{14} \right\} \frac{1}{6} \times \frac{3}{2} \dots \text{[By distributivity]} \\ = \frac{2}{5} \times \left\{ \frac{(-6)+1}{14} \right\} \frac{1}{6} \times \frac{3}{2} \\ = \frac{2}{5} \times \left\{ \frac{-5}{14} \right\} \frac{1}{6} \times \frac{3}{2} = \frac{-1}{7} \frac{1}{4} \\ = \frac{-4-7}{28} = \frac{-11}{28} \end{array}$